Detecting natural selection in high-altitude human populations.
نویسنده
چکیده
High-altitude natives have distinctive biological characteristics that appear to offset the stress of hypoxia. Evolutionary theory reasons that they reflect genetic adaptations resulting from natural selection on traits with heritable variation. Furthermore, high-altitude natives of the Andean and Tibetan Plateaus differ from one another, perhaps resulting from different evolutionary histories. Three approaches have developed a case for the possibility of population genetic differences: comparing means of classical physiological traits measured in samples of natives and migrants between altitudes, estimating genetic variance using statistical genetics techniques, and comparing features of species with different evolutionary histories. Tibetans have an inferred autosomal dominant major gene for high oxygen saturation that is associated with higher offspring survival, a strong indicator of ongoing natural selection. New approaches use candidate gene and genomic analyses. Conclusive evidence about population genetic differences and associations with phenotypes remains to be discovered.
منابع مشابه
Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Alt...
متن کاملAndean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia.
Research on humans at high-altitudes contributes to understanding the processes of human adaptation to the environment and evolution. The unique stress at high altitude is hypobaric hypoxia caused by the fall in barometric pressure with increasing altitude and the consequently fewer oxygen molecules in a breath of air, as compared with sea level. The natural experiment of human colonization of ...
متن کاملShared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations
The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investiga...
متن کاملAndean and Tibetan patterns of adaptation to high altitude.
OBJECTIVES High-altitude hypoxia, or decreased oxygen levels caused by low barometric pressure, challenges the ability of humans to live and reproduce. Despite these challenges, human populations have lived on the Andean Altiplano and the Tibetan Plateau for millennia and exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. We and others have identifi...
متن کاملTwo routes to functional adaptation: Tibetan and Andean high-altitude natives.
Populations native to the Tibetan and Andean Plateaus are descended from colonizers who arrived perhaps 25,000 and 11,000 years ago, respectively. Both have been exposed to the opportunity for natural selection for traits that offset the unavoidable environmental stress of severe lifelong high-altitude hypoxia. This paper presents evidence that Tibetan and Andean high-altitude natives have adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Respiratory physiology & neurobiology
دوره 158 2-3 شماره
صفحات -
تاریخ انتشار 2007